Coronary Artery Disease Prediction Using Decision Trees and Multinomial Naïve Bayes with k-Fold Cross Validation

نویسندگان

چکیده

Penyakit arteri koroner (coronary artery disease) menjadi penyebab utama kematian penduduk di dunia setidaknya selama dua dekade (2000-2019) dan mengalami peningkatan terbesar dalam rentang waktu tersebut dibandingkan dengan lainnya. Keberhasilan memprediksi penyakit secara dini berdasarkan data medis bermanfaat bagi pasien juga kestabilan perekonomian negara. Tujuan penelitian ini adalah jantung mengimplementasikan metode statistical learning yaitu Multinomial Naïve Bayes pohon keputusan validasi silang 10-fold, dimana variabel-variabel numerik didiskritisasi untuk memperoleh kategorik. Hasil menunjukkan bahwa Pohon Keputusan memiliki kinerja yang lebih baik koroner. Ukuran tingkat akurasi 99,63 %, sensitivitas 100 spesifisitas 99,33%, presisi 99,23 nilai prediksi negatif (NPV) %. Ukuran-ukuran mengindikasikan layak digunakan coroner, termasuk independent berupa coroner lainnya variable predictor sama. perbedaan rujukan penelitian-penelitian sebelumnya mendiskritisasi variabel mampu meningkatkan coroner.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Designing and evaluation of a decision support system for prediction of coronary artery disease

Introduction: Since human health is the issue of Medical Research, correct prediction of results is of a high importance. This study applies probabilistic neural network (PNN) for predicting coronary artery disease (CAD), because the PNN is stronger than other methods. Methods: In this descriptive-analytic study, The PNN method was implemented on 150 patients admitted to the Mazandaran Heart...

متن کامل

The 'K' in K-fold Cross Validation

The K-fold Cross Validation (KCV) technique is one of the most used approaches by practitioners for model selection and error estimation of classifiers. The KCV consists in splitting a dataset into k subsets; then, iteratively, some of them are used to learn the model, while the others are exploited to assess its performance. However, in spite of the KCV success, only practical rule-of-thumb me...

متن کامل

A K-fold Averaging Cross-validation Procedure.

Cross-validation type of methods have been widely used to facilitate model estimation and variable selection. In this work, we suggest a new K-fold cross validation procedure to select a candidate 'optimal' model from each hold-out fold and average the K candidate 'optimal' models to obtain the ultimate model. Due to the averaging effect, the variance of the proposed estimates can be significan...

متن کامل

Cross-domain Sentiment Classification using an Adapted Naïve Bayes Approach and Features Derived from Syntax Trees

Online product reviews contain information that can assist in the decision making process of new customers looking for various products. To assist customers, supervised learning algorithms can be used to categorize the reviews as either positive or negative, if large amounts of labeled data are available. However, some domains have few or no labeled instances (i.e., reviews), yet a large number...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Inovasi Matematika

سال: 2021

ISSN: ['2656-7245', '2656-7431']

DOI: https://doi.org/10.35438/inomatika.v3i2.266